NCGENERATORS
NCGENERATORS

If you need a new generator, or an existing generator serviced or repaired, use our 25 plus years experience, committed to only generators for the residential & commercial markets.  Our proactive and well thought out plans are successful! 

 

Schedule Now!

 

Please provide contact info via provided email, someone will contact you typically within 2 hours!

 

 

 

 

 

Do you have questions about how to check or change your oil during a power outage?  We can help!  Click the provided link with your question.

 

I have a question.

What is a managed whole house generator? 

 

What size is necessary for the job you intend for your generator to do? 

 

Are there inconveniences associated with a managed system?  All these questions we will address.

 

Do you need more information?  Send us your questions, we can help!  Click the provided link with your question.

 

I have a question!

 

 

 

E&W Electrical, LLC
515 Meadowlands Dr
Hillsborough, NC  27278

 

Office:    

919-245-0200

 

Toll Free:

1-888-919-5210

 

Email:

info@ncgenerators.com

ncgenerators.com

Whole house managed residential generator systems for Raleigh, Durham, Chapel Hill, Greensboro, and surrounding counties.

When you are using a generator, meaning this is the only source of electricity providing power to your home or business, all your electrical loads or work is being taken care of by the generator. This said, when you are using different appliances in your home, air conditioning, heat, well pumps, hot water heaters, refrigerators, lighting, power for the TV, washers, computers, the list goes on and on, different levels of load or work is being introduced to the generator.  As you use your home, even if you understand electricity with respect to the electrical load for each appliance being used, it would be hard to calculate just how much work you are asking of the generator.  The electrical load attaching to your generator changes as you use your home, some loads are automatic and you are not necessarily turning them on and off, they work off thermostats or automatic controls of certain appliances.  Generators no matter what the size, have limitations and all structures, home or business, have different amounts of electrical loads or potential work which can attach to the generator.

 

Until recently, especially in the residential markets, implementation of adequately sized generator systems did not always occur; this introduced overload potentials, creating bad scenarios for both the generator system and the loads attaching to the generator system.  This usually would result in high repair cost or replacement of damaged appliances and or generator systems.

 

The potential overload issues created the need for a new electrical rule or standard which required load calculations for generator systems being installed on any type structure.  This means, there is a mathmatical formula, the electrical level or amount of work required by the generator for each appliance, receptacle or lighting fixture that can be used during a power outage condition is inserted into this formula.  The result of the mathmatical calculation tells you what the potential level or amount of work you want the generator to do. 

 

In 2008 this requirement for load calculations was implemented by the National Electrical Code Board and then adopted by all local inspection jurisdictions.  Like with other things, there is exception, automatic load management with respect to the needed size generator, if that exception.  Due to the cost associated with the installation of the larger generator  systems needed to satisfy this new rule, manufacturers started utilizing load shedding or management practices so as to minimize the generator system size and ultimately cost. 

 

The load shedding or management practices consisted of automatically disconnecting certain loads before a user could overload the generator.  This would eliminate the overload potentials which may exist for generator systems.  Today, it is most practical to manage the larger loads, air conditioning, electric heat, dryers, ovens, ranges, cooktops.  Most lighting and receptacle loads are fairly insignificant as they only provide 3 watts per square foot of the structure with respect to the total load connection potential.  It is possible to prioritize the way you want management done.  Priority levels for certain loads are determined by how individuals use the electricity in their home or business. 

 

An example of caculated load for a home, a 2500 square foot home with 2 heat pumps with auxiliary heating strips in the air handler, an electric hot water heater, dryer, free standing range, one kitchen with dishwasher, disposal, and space saver style microwave, one laundry, and a well pump, the calculated load would be approximately 37 KW depending on the size of the auxiliary heating strips.  This means for generator success without potential damages created by overloads and then also to accomodate the requirements of electrical codes, you would need to use a 37 KW generator or a smaller size system with automatic load management.  For the smaller size with management scenario, a 20 KW system fueled by natural gas which really is only 18 KW when fueld by natural gas and dependent on the manufacturer, the ratings may actually be inflated, but this is another story.  For our example, we will assume everything with regards to rating is correct and we understand the stated 20 KW rating on the generator is only 18 KW with fueled by natural gas.  For this example using the 18 KW systems, for the 37 KW load connection potential, you would have to manage 19 KW of the load.

 

The 20/18 KW whole house generators being sold thru the different venues, is not large enough for this structure unless several of the appliances are routed thru the load management portion of the generator system.  So what do you shed?  For an example let us say you shed the dryer and the free standing range, this will eliminate 4.5 KW of the overload potential, so what do you choose next?  Most load managment systems are designed to shed air conditioning and heating loads or the larger 240 volt appliances like the free standing range, dryer, hot water heaters, etc.  However these may be the appliances you really need during an extended outage so careful and experienced planning is necessary to reduce inconveniences which can occur with load management.

 

It is certain that load management has created fewer incorrectly sized systems for structures however load management does present the need for careful thought as to how to implement.  Most load management programs allow for the shedding of several appliances, this in turn reduces the load which can connect to the generator which in turn means a smaller system.  This said, consideration should be given to the inconveniences that load management can create.  If the generator system selected for use is too small and several appliances are connected thru the load management portion of the system, they may never connect.  For appliances which you really want, it would be extremely inconvenient if these loads disconnected every time you go to use them.

 

Average demand requirements for common appliances.
Appliance Wattage
Oven 5700 - 8400 watts
Cooktop 4200 - 5700 watts
Range 5700 watts
Microwave 750 - 1500 watts
Refrigerator     400 - 800 watts 
Dishwasher 1125 watts
Disposal

1050 watts

Kitchen Appliance Circuits  3000 watts
Washing Machine 1500 watts
Hot Water Heater 

4500 watts

Lighting & Receptacle Loads 3 watts per square foot
AC 2000 - 7000 watts
Gas Furnace 400 - 800 watts
Heat Pump 2000 - 7000 watts
Air Handler with Heating Strips                5000 - 15000 watts
Dryer 5700 watts
Hot Tub

14500 watts

 

Something to consider; heat pumps systems present unique challenges to generators. When the heat pump is called to work by the thermostat setting, both the heat pump load and the auxiliary heating strip load can attach to the generator simultaneously, until the heat exchanger of the air handler is warm enough due to the heat pump functions; at this time the strip heating load would shut down.  Additionally heat strips associated with a heat pump system are also used if heat pumps go thru a defrost cycle.

 

For an average, mid size system, this would equate to appx. 60 amps.  The output capacity of a 20 KW system, fueled by natural gas is 75 amps; just the one heat pump system would equal 80% of the generator's capacity.  Most load management systems would shed the heat pump or the air handler as soon as they tried to connect; how the priorities were set, would determine which would shed first.

 

As noted careful planning is essential, We Can Help!

 

Cost of Electricity

Kilowatt hours, are a measurement of electrical usage, multiplied by whatever the utility company rates are.  Understanding this concept will go a long way to help you know where your energy dollars are going as well as provide a foundation for any future savings due to conservation.

 

Power consumption is measured in watts, volts multiplied by amperage equals watts which is usage.  The size of the appliance or duration of its use, both will effect power consumption.

 

Another way of looking at this; a 10KW solar array on the east coast, on average,  produces about 55 Kilowatt hours of energy per day.  At the average 9.5 cents a kilowatt hour you pay the power company, that would equate to $5.23 a day the 10 KW solar array could save you in energy payouts.

 

The data provided below should help to clarify normal electrical usage for an average size home, for one day!

Electrical Loads Hours Kilowatt Hours  Cost
(9) 100 watt light bulb 10 9 kilowatt hours .85
(1) 500 watt refrigerator 12 6 kilowatt hours .57
(1) 4500 watt water heater 03 13.5 kilowatt hours 1.28
(1) 5500 watt range 01 5.5 kilowatt hours .52
(1) 1500 watt washer 02 3 kilowatt hours .29
(1) 4500 watt dryer 02 9 kilowatt hours .76
(1) 2000 watt well pump 04 8 kilowatt hours 1.14
(2) 4800 watt central AC 06 58 kilowatt hours 5.51

Energy Management

Energy management is simply taking control of the amount of energy used; turning lights off for spaces not in use is a form of energy management. Management can be accomplished with automatic systems, setting load priority and maximum usage levels.  Heating and air conditioning type loads are generally the easiest to manage, and they make up the larger block of energy consumption. 

 

Today energy management is a popular topic of discussion and the technology is becoming part of all energy consuming appliances, lighting, and generator systems.

 

Fuel Management

Your form message has been successfully sent.

You have entered the following data:

Energy & Fuel Management Contact Form

Please correct your input in the following fields:
Error while sending the form. Please try again later.

Note: Fields marked with * are required

Print Print | Sitemap
Under the DMCA or Digital Millennium Copyright Act, all content published online is protected under copyright law, regardless of it having the copyright symbol on the page. Any content, no matter the form it takes (whether digital, print, or media) is protected under copyright law. The author takes no responsibility for the timeliness, accuracy, completeness or quality of the information provided. The author is in no event liable for damages of any kind incurred or suffered as a result of the use or non-use of the information presented on this website or the use of defective or incomplete information unless the author has been acting deliberately or in a wantonly negligent manner. The contents of this website are subject to confirmation and not binding. The author expressly reserves the right to alter, amend or remove pages, whole and in part, without prior notice or to discontinue publication for a period of time or even completely.

Call

E-mail